Законы наследственности менделя кратко

Полное разъяснение по теме: "законы наследственности менделя кратко" от профессионального юриста с ответами на все интересующие вопросы.

Изображение - Законы наследственности менделя кратко proxy?url=https%3A%2F%2F1001student.ru%2Fwp-content%2Fuploads%2F2018%2F06%2Fvpr-program-vgjournal-20140314_0

В этой статье кратко и понятно описываются три закона Менделя. Эти законы — основа всей генетики, создав их, Мендель фактически создал эту науку.

Здесь Вы найдёте определение каждого закона и узнаете немного нового о генетике и биологии в целом.

Перед началом чтения статьи стоит понимать, что генотип — это совокупность генов организма, а фенотип — его внешних признаков.

Грегор Иоганн Мендель — известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности. Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор.

Изображение - Законы наследственности менделя кратко proxy?url=https%3A%2F%2F1001student.ru%2Fwp-content%2Fuploads%2F2018%2F06%2F4495439099001_5325877588001_5319127557001-vs

Грегор Иоганн Мендель (1822 — 1884)

Позже изучал биологию в Венском университете, а затем решил преподавать физику и природоведение в Брно. Тогда же учёный заинтересовался ботаникой. Он проводил опыты по скрещиванию гороха. На основе результатов этих опытов учёный вывел три закона наследственности, которым и посвящена эта статья.

Опубликованные в работе «Опыты с гибридами растений» в 1866 году, эти законы не получили широкой огласки, и вскоре работа была забыта. О ней вспомнили лишь после смерти Менделя в 1884 году. Вам уже известно, сколько законов он вывел. Теперь пора перейти к рассмотрению каждого.

Первый закон Менделя — закон единообразия гибридов первого поколения

Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого — белые.

Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

Изображение - Законы наследственности менделя кратко proxy?url=https%3A%2F%2F1001student.ru%2Fwp-content%2Fuploads%2F2018%2F06%2Fslide-6

На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.

Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые— a. Генотип одного родителя — AA (пурпурные), а второго — aa (белые). От первого родителя будет унаследован ген A, а от второго — a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной — рецессивным.

Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены — гетерозиготным. Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный. Значит, горох с генотипом Aa будет обладать пурпурными цветками.

Скрещивание двух гетерозиготных организмов с разными признаками — это моногибридное скрещивание.

Бывает такое, что доминантный ген не может подавить рецессивный. И тогда в организме проявляются оба родительских признака.

Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой — за белые, то половина лепестков камелии станут красными, а остальные — белыми.

Видео (кликните для воспроизведения).

Изображение - Законы наследственности менделя кратко proxy?url=https%3A%2F%2F1001student.ru%2Fwp-content%2Fuploads%2F2018%2F06%2F09-04-2009-050-3

Такое явление называют кодоминированием.

Неполное доминирование — похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей. Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый.

Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак. Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным?

Изображение - Законы наследственности менделя кратко proxy?url=https%3A%2F%2F1001student.ru%2Fwp-content%2Fuploads%2F2018%2F06%2Fimg4

Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Тогда потомство разделится следующим образом:

  • AA — пурпурные цветки (25%);
  • aa — белые цветки (25%);
  • Aa — пурпурные цветки (50%).

Видно, что организмов с пурпурными цветками в три раза больше. Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.

То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих (и некоторых других) организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.

Закон чистоты гамет и его цитологическое обоснование

Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета — доминантный, а зелёного — рецессивный. В гибриде будут содержаться оба этих гена (хотя мы увидим лишь проявление доминантного).

Изображение - Законы наследственности менделя кратко proxy?url=https%3A%2F%2F1001student.ru%2Fwp-content%2Fuploads%2F2018%2F06%2Fimg12

Известно, что от родителя к потомству гены переносятся с помощью гамет. Гамета — это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете — а их две — находилось по одному гену. Слившись, они образовали генотип гибрида.

Читайте так же:  Ржд решил предоставлять круглогодичные скидки для школьников

Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия:

  • наследственные факторы гибридов не изменялись;
  • каждая гамета содержала в себе один ген.

Второй пункт — закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.

Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели — гаплоидные клетки. В данном случае это гаметы.

Третий закон Менделя — закон независимого наследования

Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян.

Изображение - Законы наследственности менделя кратко proxy?url=https%3A%2F%2F1001student.ru%2Fwp-content%2Fuploads%2F2018%2F06%2F783

Гены, отвечающие за цвет семян, обозначим как A (жёлтый) и a (зелёный); за гладкость — B (гладкие) и b (морщинистые). Попробуем провести дигибридное скрещивание организмов с разными признаками.

Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу (AaBb), и по фенотипу (с жёлтыми гладкими семенами).

Каким же будет расщепление во втором поколении? Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.

По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали — другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.

Родительские растения в этом случае имеют генотипы ААВВ и aabb, а генотип гибридов F1 – АаВb, т. е. является дигетерозиготным.

Таким образом, при скрещивании гетерозиготных особей, отличающихся по нескольким парам альтернативных признаков, в потомстве наблюдается расщепление по фенотипу в соотношении (3+1 ) п , где п – число пар альтернативных признаков.

Гены, определяющие развитие разных пар признаков, называются неаллельными.

Результаты дигибридного и полигибридного скрещивания зависят от того, располагаются гены, определяющие рассмотренные признаки, в одной или в разных хромосомах. Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха.

При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2 n = 14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако, Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Видео (кликните для воспроизведения).

На основе проведенных исследований Мендель вывел третий закон – закон независимого наследования признаков, или независимого комбинирования генов.

Каждая пара аллельных генов (и альтернативных признаков, контролируемых ими) наследуется независимо друг от друга.

Закон независимого комбинирования генов составляет основу комбинативной изменчивости, наблюдаемой при скрещивании у всех живых организмов. Отметим также, что в отличие от первого закона Менделя, который справедлив всегда, второй закон действителен только для генов, локализованных в разных парах гомологичных хромосом. Это обусловлено тем, что негомологичные хромосомы комбинируются в клетке независимо друг от друга, что было доказано не только при изучении характера наследования признаков, но и прямым цитологическим методом.

При изучении материала обратите внимание на случаи нарушений закономерных расщеплений по фенотипу, вызванных летальным действием отдельных генов.

Наследственность и изменчивость. Наследственность и изменчивость являются важнейшими свойствами, характерными для всех живых организмов.

Наследственную, или генотипическую, изменчивость подразделяют на комбинативную и мутационную.

Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:

Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Г. Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами – пример комбинативной изменчивости.

Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.

Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.

Пример комбинативной изменчивости. У цветка ночная красавица есть ген красного цвета лепестков А и ген белого цвета а. Организм Аа имеет розовый цвет лепестков. Таким образом, у ночной красавицы нет гена розового цвета, розовый цвет возникает при сочетании (комбинации) красного и белого гена.

Читайте так же:  Может ли заявление на возврат денежных соедст за неоказанную услугу считаться претензинй

У человека есть наследственное заболевание серповидноклеточная анемия. АА – норма, аа – смерть, Аа – СКА. При СКА человек не может переносить повышенных физических нагрузок, при этом он не болеет малярией, т. е. возбудитель малярии малярийный плазмодий не может питаться неправильным гемоглобином. Такой признак полезен в экваториальном поясе; для него нет гена, он возникает при сочетании генов А и а.

Таким образом, наследственная изменчивость усиливается благодаря комбинативной изменчивости. Возникнув, отдельные мутации оказываются в соседстве с другими мутациями, входят в состав новых генотипов, т. е. возникает множество сочетаний аллелей. Любая особь генетически уникальна (за исключением однояйцевых близнецов и особей, возникших за счет бесполого размножения клона, имеющего родоначальником одну клетку). Так, если допустить, что в каждой паре гомологичных хромосом имеется только одна пара аллельных генов, то для человека, у которого гаплоидный набор хромосом равен 23, число возможных генотипов составит 3 в 23 степени. Такое огромное количество генотипов в 20 раз превышает численность всех людей на Земле. Однако в действительности гомологичные хромосомы различаются по нескольким генам и в расчете не учтено явление кроссинговера. Поэтому количество возможных генотипов выражается астрономическим числом, и можно с уверенностью утверждать, что возникновение двух одинаковых людей практически невероятно (за исключением однояйцовых близнецов, возникших из одной оплодотворенной яйцеклетки). Отсюда, в частности, следует возможность достоверного определения личности по остаткам живых тканей, подтверждения или исключения отцовства.

Таким образом, обмен генами вследствие перекреста хромосом в первом делении мейоза, независимая и случайная перекомбинация хромосом в мейозе и случайность слияния гамет в половом процессе – три фактора, обеспечивающие существование комбинативной изменчивости. Мутационная изменчивость самого генотипа.

Мутации – это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Основные положения мутационной теории разработаны ученым Г. Де Фризом в 19011903 гг. и сводятся к следующему:

– мутации возникают внезапно, скачкообразно, как дискретные изменения признаков;

– отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение;

– мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными;

– вероятность обнаружения мутаций зависит от числа исследованных особей;

– сходные мутации могут возникать повторно;

– мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма.

По характеру изменения генома, т. е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

Генные, или точковые, мутации – результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена.

Такое изменение в гене воспроизводится при транскрипции в структуре и-РНК; оно приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению соответствующего признака организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов.

Хромосомные мутации (перестройки, или аберрации) – это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.

Известны перестройки разных типов:

– нехватка потеря концевых участков хромосомы;

– делеция выпадение участка хромосомы в средней ее части;

– дупликация двух- или многократное повторение генов, локализованных в определенном участке хромосомы;

– инверсия поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;

– транслокация изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.

Геномные мутации – изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом (анеуплоидия).

Полиплоидия кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называются триплоидными (3 n), тетраплоидными (4 n), гексаплоидными (6 n), октаплоидными (8 n) и т. д. Чаще всего полиплоиды образуются при нарушении порядка расхождения хромосом к полюсам клетки при мейозе или митозе. Полиплоидия приводит к изменению признаков организма и поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений. Это связано с тем, что у растительных организмов весьма широко распространены гермафродитизм (самоопыление), апомиксис (партеногенез) и вегетативное размножение. Поэтому около трети видов растений, распространенных на нашей планете, полиплоиды, а в резко континентальных условиях высокогорного Памира произрастает до 85 % полиплоидов. Почти все культурные растения тоже полиплоиды, у которых, в отличие от их диких сородичей, более крупные цветки, плоды и семена, а в запасающих органах (стебель, клубни) накапливается больше питательных веществ. Полиплоиды легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху. Именно поэтому они широко распространены в северных и высокогорных районах.

Читайте так же:  Договор купли продажи транспортного средства номерного агрегата бланк 2019

1. Моногибридное. Наблюдение ведется только по одному признаку, т.е. отслеживаются аллели одного гена.
2. Дигибридное. Наблюдение ведется по двум признакам, те.е отслеживаются аллели двух генов.

Р – родители; F – потомство, число указывает на порядковый номер поколения, F1, F2.

Х – значок скрещивания, мужские особи, женские особи; А, а, В, в, С, с – отдельно взятые наследственные признаки. А, В, С – доминантные аллели гена, а, в, с – рецессивные аллели гена. Аа – генотип, гетерозигота; аа – рецессивная гомозигота, АА – доминантная гомозигота.

Классическим примером моногибридного скрещивания является скрещивание сортов гороха с желтыми и зелеными семенами: все потомки имели желтые семена. Мендель пришел к выводу, что у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один – доминантный, а второй – рецессивный – не развивается, как бы исчезает.

Р АА * аа – родители (чистые линии)

А, а – гаметы родителей

Аа – первое поколение гибридов

Эта закономерность была названа законом единообразия гибридов первого поколения или законом доминирования. Это первый закон Менделя: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей.

Изображение - Законы наследственности менделя кратко proxy?url=http%3A%2F%2Febiology.ru%2Fwp-content%2Fuploads%2F2010%2F06%2Fmendel

Семена гибридов первого поколения использовались Менделем для получения вроторого гибридного поколения. При скрещивании происходит расщепление признаков в определенном числовом отношении. Часть гибридов несет доминантный признак, часть – рецессивный.

Изображение - Законы наследственности менделя кратко proxy?url=http%3A%2F%2Febiology.ru%2Fwp-content%2Fuploads%2F2010%2F06%2Fmendel1

F1 Аа * Аа А, а, А, а F2 АА (0,25); Аа (0,25); Аа (0,25); аа (0,25)

В потомстве происходит расщепление признаков в соотношении 3:1.

Для объяснения явлений доминирования и расщепления Мендель предложил ипотезу чистоты гамет: наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде.

Второй закон Менделя
можно сформулировать: при скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу – 1:2:1.

Третий закон Менделя
: при дигибридном скрещивании у гибридов второго поколения каждая пара контрастных признаков наследуется независимо от других и дает с ними разные сочетания. Закон справедлив лишь в тех случаях, когда анализируемые признаки не сцеплены друг с другом, т.е. находятся в негомологичных хромосомах.

Рассмотрим опыт Менделя, в котором он изучал независимое наследование признаков у гороха. Одно из скрещиваемых растений имело гладкие, желтые семена, а другое морщинистые и зеленые. В первом поколении гибридов растения имели гладкие и желтые семена. Во втором поколении произошло расщепление по фенотипу 9:3:3:1.

Изображение - Законы наследственности менделя кратко proxy?url=http%3A%2F%2Febiology.ru%2Fwp-content%2Fuploads%2F2010%2F06%2Fmendel2

Третий закон Менделя формулируется так: расщепление по каждой паре генов идет независимо от других пар генов.

Лекция № 17. Основные понятия генетики. Законы Менделя

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Читайте так же:  Региональный материнский капитал в нижегородской области в 2019 году

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар — полигибридным. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных; цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 — гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Другие материалы по теме:

Тема 2. Законы Менделя из книги «Генетика и селекция»

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

( А — желтый цвет горошин, а — зеленый цвет горошин)

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением. Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

Генетическая схема закона расщепления Менделя

( А — желтый цвет горошин, а — зеленый цвет горошин):

Купить проверочные работы
и тесты по биологии

Изображение - Законы наследственности менделя кратко proxy?url=https%3A%2F%2Flicey.net%2Fupload%2Fgoods%2Fbg823669770

Изображение - Законы наследственности менделя кратко proxy?url=https%3A%2F%2Flicey.net%2Fupload%2Fgoods%2Fbg478664957

Изображение - Законы наследственности менделя кратко proxy?url=https%3A%2F%2Flicey.net%2Fupload%2Fgoods%2Fbg1944878031

Изображение - Законы наследственности менделя кратко proxy?url=https%3A%2F%2Flicey.net%2Fupload%2Fgoods%2Fbg929923897

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).
Читайте так же:  В балашихе где находится центр по приему документов на приватизацыю квартиры

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А , а зеленую — а . Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа ). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А , а другого — с геном а .

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа ; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А , другая половина — ген а . Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а ), 1/4 — гомозиготы по доминантному признаку (несут два гена А ) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а ). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска ( А ) и гладкая форма ( В ) семян — доминантные признаки, зеленая окраска ( а ) и морщинистая форма ( b ) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

Изображение - Законы наследственности менделя кратко 435643455
Автор статьи: Сергей Самойлов

Добрый день! Меня зовут Сергей. Я уже более 17 лет занимаюсь юриспруденцией. Считаю, что являюсь профессионалом в своей области и хочу помочь всем посетителям сайта решать сложные и не очень задачи. Все данные для сайта собраны и тщательно переработаны для того чтобы донести как можно доступнее всю требуемую информацию. Однако чтобы применить все, описанное на сайте – всегда необходима ОБЯЗАТЕЛЬНАЯ консультация с профессионалами.

Обо мнеОбратная связь
Оцените статью:
Оценка 4.8 проголосовавших: 4

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here